
Kaisa Korhonen

Predicting mobile device battery life

Thesis submitted for examination for the degree of Master of
Science in Technology.

Espoo 28.2.2011

Thesis supervisor and instructor:

Prof. Jukka Manner

A! Aalto University
School of Electrical
Engineering

aalto university

school of electrical engineering

abstract of the

master’s thesis

Author: Kaisa Korhonen

Title: Predicting mobile device battery life

Date: 28.2.2011 Language: English Number of pages:6+56

Department of Communications and Networking

Professorship: Networking Technology Code: S-38

Supervisor and instructor: Prof. Jukka Manner

Mobile phones and other mobile devices have one resource in common that is
essential to all of them: battery life. Once the battery is empty, the device is
useless until it is recharged. Limited battery life has become an issue especially
in the newest mobile devices. The evolution of mobile devices during the last
ten years has changed them from mobile phones into multi-functional mobile
computers. Today’s mobile device can contain for example a web browser, a
music player and a navigator. This evolution has made the devices increasingly
useful and important in everyday situations, but at the same time the average
power consumption of the devices has increased, leading to shorter and less
predictable battery life.

This thesis examines how the remaining battery life could be estimated
and indicated to the user in an intuitive way. The target platform of the work was
the Linux-based mobile computer, Nokia N900. The work shows that estimating
the remaining battery life on the target device in a reliable manner is feasible.
The outcome of the work is a battery monitoring application, named BattInfo,
which provides the user with remaining battery life estimations, such as call time
and music playback time. BattInfo was also tested on a group of N900 users, and
further improved based on the results from the testing.

Keywords: Mobile device, battery life, energy consumption, software implemen-
tation

aalto-yliopisto

sähkötekniikan korkeakoulu

diplomityön

tiivistelmä

Tekijä: Kaisa Korhonen

Työn nimi: Mobiililaitteen akkukeston ennustaminen

Päivämäärä: 28.2.2011 Kieli: Englanti Sivumäärä:6+56

Tietoliikenne- ja tietoverkkotekniikan laitos

Professuuri: Tietoverkkotekniikka Koodi: S-38

Valvoja ja ohjaaja: Prof. Jukka Manner

Matkapuhelimet ja muut mobiililaitteet ovat kaikki riippuvaisia yhdestä kriit-
tisestä tekijästä: akkukestosta. Kun akku tyhjenee, laite on hyödytön kunnes
käyttäjää pystyy uudelleen lataamaan laitteen. Akkukesto on muodostunut on-
gelmaksi etenkin uusimmissa älypuhelimissa. Matkapuhelinten kehitys viimeisen
vuosikymmenen aikana on muutanut ne yksinkertaisista kannettavista puhe-
limista monitoimilaitteiksi. Uusimmat älypuhelimet voivat sisältää esimerkiksi
internet-selaimen, mediasoittimen ja navigaattorin. Tämä kehitys on tehnyt
puhelimista entistä hyödyllisempiä jokapäiväisissä tilanteissa, mutta samalla
laitteiden keskimääräinen energiankulutus on kasvanut, johtaen lyhyempään
akkukestoon.

Tässä työssä tutkitaan miten akkukestoa pystyttäisiin ennustamaan ja esittämään
käyttäjälle intuitiivisella tavalla. Työn kohdelaite oli Linux-pohjainen älypuhelin,
Nokia N900. Työssä näytetään, että akkukestoa todellakin on mahdollista
ennustaa luotettavalla tavalla. Työn tuloksena syntynyt akunmonitorointi-
sovellus, BattInfo, näyttää käyttäjälle monipuolista tietoa jäljellä olevasta
akkukestosta, esimerkiksi jäljellä olevan puheajan ja musiikinsoittoajan. Ryhmä
N900-puhelimen käyttäjiä testasi BattInfoa, ja saatujen tuloksien perusteella
sovellusta edelleen parannettiin.

Avainsanat: Mobiililaite, akunkesto, energiankulutus, sovelluksen toteutus

iv

Preface

This thesis was done as a research project under the supervision of professor Jukka
Manner. I would like to thank Jukka for his guidance and feedback, that greatly
motivated me during the work.

I would also like to thank my friends Atte, Pekka and Juho for the splendid years
at TKK, as well as Salvatore and my family for their support and encouragement
during my studies and this work.

Otaniemi, 28.2.2011

Kaisa Korhonen

v

Contents

Abstract ii

Abstract (in Finnish) iii

Preface iv

Contents v

1 Introduction 1

2 Evolution of mobile devices 3
2.1 Increasing power consumption . 3
2.2 Methods for improving battery life 6
2.3 Need for battery life prediction . 7
2.4 Battery monitoring applications . 8
2.5 Summary . 9

3 Reducing the power consumption of mobile devices 10
3.1 Wireless communications . 10

3.1.1 Reducing WLAN energy consumption 10
3.1.2 Optimizing over multiple network connections 11
3.1.3 Use of parallel TCP connections 13
3.1.4 Localization . 13
3.1.5 Proxy-assisted energy saving 14
3.1.6 Data compression . 14

3.2 Displays . 15
3.3 Computation offloading . 16
3.4 Summary . 17

4 Predicting battery life and charging time 18
4.1 Predicting battery life on the N900 18
4.2 Power consumption measurements . 21

4.2.1 Measurement cases . 22
4.2.2 Measurement setup . 23
4.2.3 Results . 24

4.3 Charging time estimation . 26
4.4 Summary . 28

5 Implementing the battery monitoring application 30
5.1 Goals and requirements . 30
5.2 Maemo . 31
5.3 Application overview . 32
5.4 Estimating battery life based on usage history 35
5.5 Additional features . 37
5.6 State machine and module structure 38

vi

5.7 Summary . 40

6 User testing 41
6.1 Arrangements and questionnaires . 41
6.2 Results . 41
6.3 Conclusions and changes to BattInfo 45
6.4 Summary . 46

7 Conclusions and future work 47

References 49

Appendix A 53

A Output of ”hal-device bme” system command 53

Appendix B 54

B Debian packaging of a Qt application for Maemo 54

1 Introduction

Mobile phones and other mobile devices have one resource in common that is es-
sential to all of them: battery life. Once the battery is empty, the device is useless
until it is recharged. An ideal mobile device would never have to be recharged by
the user: it would recharge itself wirelessly or reproduce the energy it needs from
movement. While this ideal device remains to be invented, we must deal with the
challenges set by limited battery life.

Limited battery life has become an issue especially in the most recent generation of
mobile devices. The evolution of the devices during the last ten years has changed
them from mobile phones into multi-functional mobile computers. Today’s mobile
device can contain for example a web browser, a music player, a navigator and a
wealth of networked applications. This evolution has made the devices increasingly
useful and important in everyday situations, but at the same time the average power
consumption of the devices has increased, leading to shorter and less predictable
battery life. It has become difficult for a user to estimate when the battery of the
mobile device will run out and what can still be done with the remaining battery
capacity.

One way to relieve this problem is to inform the user about the remaining battery
capacity on the device. The current methods of showing battery-related information
in most mobile devices, not only in phones but also in cameras, mp3 players and
laptops, typically consist of 1) a bar that roughly shows the battery charge level and
2) an audio alarm that warns about low battery. These two methods have remained
practically the same for the last ten years, even though the mobile devices themselves
have developed tremendously and would allow for more advanced methods to be
used. As an example of a more advanced method, modern cars tell the driver how
many kilometers can approximately be driven with the remaining amount of fuel.
Also laptops give the user an estimate about the remaining battery life.

The goal of this thesis is to examine how the remaining battery life in a mobile device
could be estimated and to design and develop a battery monitoring application for
a Linux based mobile computer, Nokia N900. The battery monitoring application
should provide the user with more elaborate information about the battery charge
level and remaining battery life, for example the remaining call time and remaining
audio playback time. Also the possibility of estimating charging time is studied.

The work shows that estimating the battery life on the target device is possible and
relatively straightforward: it can be calculated by dividing the battery charge level
reported by the device by the current demand of the device. Estimating charging
time revealed to be more challenging, but also possible. Based on this informa-
tion, a battery monitoring application, named BattInfo, was developed. BattInfo
monitors the battery status and, based on the average current demand of different

2

tasks measured offline, calculates battery life estimations for the tasks, such as the
remaining standby time, call time, web browsing time and video playback time.
BattInfo presents all the information via a graphical user interface. A user test
was conducted on BattInfo, which showed that BattInfo is indeed a useful, trust-
worthly application, that helps the users to manage their batteries. The results of
this work are applicable not only for mobile and smart phones, but for practically
any multi-purpose device that runs on battery power, such as a laptop or a tablet
computer.

The remainder of this work is organized as follows. Chapter 2 describes the evo-
lution of mobile devices and discusses how the evolution has affected the battery
life. Chapter 3 presents various research papers that aim at reducing the energy con-
sumption of mobile devices. Chapter 4 studies the possibilities for predicting battery
life and charging time on the target device. It also presents the measurements that
were conducted in order to find out the power consumption of different tasks (e.g.
calling, web browsing) on the N900. Based on the findings in Chapter 4, a battery
monitoring application, named BattInfo, is designed and implemented. BattInfo
is described in detail in Chapter 5. Finally, a user test conducted on BattInfo is
presented after which the application is evaluated and conclusions are made.

3

2 Evolution of mobile devices

According to a user study conducted in 2005 by TNS, the world’s largest custom
market research specialist, the most wanted feature in the future mobile device is
”two days of battery life during active use” [1]. Short battery life was, and still
is, an issue in the mobile devices. This chapter describes the evolution of mobile
devices during the last 10-15 years, explaining the reasons that have lead to this
situation and the possible remedies. An overview of the currently available battery
monitoring applications for mobile devices is given in the end of the chapter.

2.1 Increasing power consumption

The use cases of mobile devices have changed a lot during the past years, as illus-
trated in Figure 1 [2]. The uses cases of the first mobile phones were simple: calling
and possibly text messaging. Since most people only make a few phones calls per
day and also because calling and text messaging were more expensive than today,
the phones were in standby state most of the time.

As the phones then started to develop, new features such as a calendar, mp3 play-
back, and FM radio were embedded into the devices. As there were more use cases,
the phones were not left in standby state for long times, instead they were used
throughout the day for various purposes. The mobile phones became smart phones,
and as they were used more than before, the power consumption of the phones in-
creased. The newest generation of mobile devices is characterized by an increasing
amount of connected, always-online applications. For example social networking and
localization services are increasingly popular [2]. The increased usage of bandwidth
and running many applications simultaneously in the background have increased the
energy demand of the devices even more.

Also GSM Arena provides interesting figures about mobile device features in their
article ”Mobile phone evolution: features in focus” [3]. The article depicts the
penetration of different interfaces and features in mobile phones during the last
decade. Figure 2 for example shows the yearly proportion of mobile phones equipped
with a Wireless Local Area Network (WLAN) interface. The green bars in the figure
indicate the absolute average, in which each phone model has the same statistical
importance (same weight). The orange bars indicate the weighted average, which
takes into account the fact that different phone models are of different importance,
based on the amount of times that the model was looked up from the GSM Arena’s
database. Thus, when calculating the weighted average a popular phone model has a
higher weight than an unpopular one does. During the last ten years, the proportion
of mobile phones equipped with a WLAN interface has grown almost 40% measured
by the absolute average and the growth is even bigger if measured by the weighted

4

Figure 1: The evolution of the use cases of mobile devices [2].

average.

The article provides the same figures also for Bluetooth, FM radio and Global Po-
sitioning System (GPS) interfaces. Each of them has steadily grown its penetration
in mobile phones during the last ten-year period. Thus, a mobile device today can
have five radio interfaces (cell radio, WLAN, bluetooth, FM and GPS interfaces),
whereas ten years ago the phones only had one or two. Also the penetration of
cameras embedded in mobile phones has increased almost up to 100%. Another
feature that has a big effect on the phones’ power consumption is the screen size.
It is known that the screens account for significant energy demand in the modern
phones [4]. Figure 3 shows the average size of the mobile phone display since 2000.
The average display size has grown more than 60% if measured by the absolute
average, and almost 100% if measured by the weighted average, furhter increasing
the overall energy consumption of the mobile devices.

Thus, the average power consumption of the mobile devices has grown significantly.
The battery technologies have also developed, but not nearly as fast as the devices.
Figure 4 illustrates the gap between the amount of energy needed by a Nokia mobile
device for two days’ active usage, and the amount of energy that can be provided by
a standard-sized battery, according to Nokia’s internal analysis [2]. The red curve in
the figure shows how the energy demand of the devices has grown and is estimated
to grow in the coming years. The energy available from a standard size battery,

5

Figure 2: WLAN interface penetration in mobile phones [3].

Figure 3: Mobile phone display size [3].

depicted in the figure with the blue curve, is clearly not sufficient.

Because of the big gap between the energy needed by the mobile device and the
energy available from the battery, the average battery life of the mobile devices in
active use is less than two days. In addition to shorter battery life on average, the
battery life has become less predictable. An older mobile phone could only be used
for calling and text messaging. Thus, calling was the most energy-demanding task

6

Figure 4: Mobile phone energy need vs. energy availability[2].

that could be done with the phone. It was relatively easy for the user to predict how
fast the battery would drain during the day. In today’s mobile phones the maximum
power consumption has grown, which means that there is a greater variation in the
power consumption of the phone. In standby state without an internet connection
the battery can last for several days. If the user instead has a GPS-based map
application running in the background while browsing the web and listening to
music, the battery can be completely drained in a couple of hours. The battery life
is thus more unpredictable in the new mobile phones.

2.2 Methods for improving battery life

The two basic ways to improve battery life are: maximizing the energy available
to the mobile device and minimizing the energy needed by the device. Maximizing
the energy available to the device can be done by improving the battery capacity
(without increasing the battery size). In the past years the battery capacity has
improved by 5-10% annually [2], which has not been enough to compensate for the
increased energy demand of the mobile devices. Charging speed and convenience
are other factors that affect the amount of energy available to the mobile device. If
charging was fast and possible nearly everywhere (in offices, cafeterias, buses, bus
stops), the short battery life would not be such a serious problem, since the device
could be charged almost anywhere and anytime. Also the utilization of new energy
sources, for example solar energy, energy from movement and wireless energy, would
make the charging more convenient, and further improve the situation.

The second approach is to minimize the overall energy consumption of the device.
There are many ways to achieve this. The ones mentioned in [2] are: improving

7

hardware efficiency, new power management techniques, optimizing cellular net-
works and improvements in the user interface (software design). According to [2],
software design is the potential means for reducing the power consumption, but
so far, no significant improvements have been introduced and the battery life has
remained short.

2.3 Need for battery life prediction

The approach taken in this work is to study how the battery life could be predicted
and presented to the user. Instead of trying to directly address the problem of short
battery life, the work concentrates on improving user satisfaction. While battery life
remains short, it is better for the user to at least know about the remaining battery
life than to be left with the short, unpredictable battery life. As a matter of fact,
regardless of whether the battery life is long or short, the user satisfaction would
most likely improve if the remaining battery life of a mobile phone, mp3 player or a
camera was clearly visible to the user.

Another reason why battery life prediction is needed is that the users of the mobile
devices rely more on their devices today than ten years ago. The mobile phone
has become an all-in-one device, having applications such as a phone/address book,
calendar, email, mp3 and video player, camera, web client and navigator. This
evolution has made the devices increasingly important in everyday situations. The
user might rely on finding her way to her destination using the navigator of the
mobile device or on looking up the place of a business meeting in the middle of
the day from the calendar of the mobile device. It is also more and more common
that the mobile device is the only phone that a person owns [5], implying that it
should be available in case of emergency. An unexpectedly empty battery would be
a disturbing, or even a harmful distraction in all the above-mentioned cases. As a
result, there clearly is a need to inform the user about the battery life left in the
mobile device.

Also a user survey, conducted in parallel to this work by researchers from Helsinki
Institute for Information Technology, revealed the users’ need for more eloborate
battery information. The survey consisted of both street questionnaires and of
diaries kept by some users and it aimed to study the behaviour of mobile device
users regarding the battery and the battery life. The results revealed that users do
worry about running out of battery and that they have different methods for trying
to cope with a nearly empty battery, such as avoiding usage of the device, sending
text messages instead of calling and turning the phone silent. The conclusion that
can be drawn from the survey is that the users are not sure how long their battery
will last and what should be done in order to save battery. This again indicates a
need for better battery monitoring applications.

8

2.4 Battery monitoring applications

Even though the processing power and storage capabilities of mobile devices have
been growing exponentially, following Moore’s law, the battery management tech-
niques are much left behind [6]. As mentioned in the introduction, the default
battery management techniques of mobile devices are the battery charge level meter
and an audio alarm for low battery, and they have remained practically unchanged
for years. The battery charge meter typically has only coarse accuracy and it does
not give the user any idea about the remaining battery life. The battery-low audio
alarms are typically played only when the battery is close to empty, when it might
already be too late for the user to find a charger. Furthermore, the user does not
know how long the battery will last and what can still be done with the remaining
capacity after the battery-low alarm has been played.

More advanced battery monitoring applications do exist for some mobile phones, but
they generally need to be separately installed by the user from an application store.
myBatteryLife is a battery monitoring tool for iPhone. When the application is
launched, it shows the accurate battery charge level in percentage and the remaining
battery life for five different tasks (calling, web browsing using 3G and WLAN, audio
playback and video playback) in a full-screen window.

Battery Monitor is a similar application for Nokia’s Symbian devices, released in
the Nokia Ovi Store in the end of 2010. It shows estimates for the remaining
active, talk, web browsing and music playback time. The remaining active time is
calculated based on the online-measured power consumption history of the device
and the other values are based on offline-measured power consumption of the task.
Also a charging time estimate and other statistics on battery usage are shown. The
user can also place a Battery Monitor widget on the desktop, showing the estimated
time for one of the tasks. This application is similar to ours, yet our application
has more features and was in user studies by the time the Nokia’s application was
released.

When our work started in the spring 2010, a similar application to myBatteryLife
and Battery Monitor could not be found for the Nokia N900 mobile computer, which
is the target device of this work. There are at least two applications, BatteryGraph
and BatteryEye, which monitor and log the battery information on the device and
then show the power consumption history as graphs, but neither of them provides
any estimations on the remaining battery life. Both of the applications are clearly
targeted to the more technical users. The goal of this work is therefore to implement
a battery monitoring application for the N900, that is able to estimate the remaining
battery life and present it to the user in an appealing, easily understandable manner.

9

2.5 Summary

This chapter studied the evolution of mobile phones from the perspective of power
consumption and battery life. As the mobile devices have changed from simple
phones to multi-purpose mobile computers, they now have many more use cases
than before and the power consumption has increased. The mobile devices have
become more important and useful in the everyday situations, but at the same time
the battery life has become shorter and less predictable.

The methods for informing the user about the state of the battery have remained the
same for years and are clearly not sufficient. While the mobile devices themselves
have developed quickly, and have now big colour displays that make it possible to
create visually appealing graphical user interfaces, the battery charge meter has not
developed during the past years. Also a survey that examined the users’ behaviour
regarding the battery showed that the users cannot know when their battery will
run out and that they are troubled by it. Hence, there is a substantial need for
better battery monitoring techniques and applications.

10

3 Reducing the power consumption of mobile de-

vices

In order to keep the battery life of mobile devices long enough while more and more
interfaces and features have been embedded into them and the displays have grown,
methods for reducing the power consumption of mobile devices have been actively
researched. As stated in the previous chapter, the improvements in batteries have
not been enough to satisfy the increasing energy demand of the devices, but one can
argue that also heat is an issue: even if the batteries could provide more energy, the
power consumption of the mobile devices must be decreased because high energy
consumption results in battery heating. This can be experienced for example with
the target device of this work, the N900: during a 30-minute Skype call the device
warms up so much that talking on it becomes uncomfortable. Therefore, even if
better, more energy-dense batteries were available, they cannot alone be the solution
for the problem. This chapter presents numerous research in the area of reducing
mobile device power consumption.

3.1 Wireless communications

In a modern mobile device, wireless interfaces and wireless data transfer account
for a significant amount of the total energy consumption of the device. As mobile
packet data is becoming more common [7] and more always-online applications,
e.g. social media and location services, are running on the devices, the amount of
energy consumed by wireless communications is further growing. The typical set
of wireless interfaces in a mobile device are the WLAN, Bluetooth and the cellular
interfaces. There are different approaches to minimizing the energy consumed by
wireless transfer. One can for example try to minimize the energy consumed by an
individual interface, optimize over several interfaces (by choosing the least energy-
consuming interface for transfer), minimize the amount of time that the interfaces
are used or minimize the amount of data transferred. All these approaches and a
few others are covered in this section.

3.1.1 Reducing WLAN energy consumption

Chapter 2 showed how the penetration of the WLAN interface in mobile devices has
grown during the last years. WLAN is characterized by higher transmission speed
(compared to a 3G connection) but also by high energy consumption. Consequently,
reducing the WLAN energy consumption is very important considering the mobile
devices’ battery life. The research in this area is numerous. Some of the recent work
is pointed out here, leaving the more thorough study for the interested reader.

11

The energy efficiency of MAC protocols for WLANs is studied in [8]. The paper
integrates the various issues and challenges of MAC protocols for WLANs that have
previously been researched individually, and classifies the MAC protocols based on
their energy efficiency. The power management of the IEEE 802.11 based infras-
tructure mode WLAN is investigated in [9] and the optimal power management
parameters are sought. While most of the research about the parameter configura-
tion is based on simulation, the authors propose two queuing models (the M/G/1
and D/G/1 queues) to analyze the power management scheme by theoretical means.
They find that the analytical models are strongly supported by the simulation re-
sults. The paper identifies the optimal parameters for energy efficiency and discusses
them to achieve maximum energy efficiency without degrading the overall system
performance.

The performance of the Power Save Mode (PSM) of the IEEE 802.11 infrastruc-
ture WLAN is analyzed in [10]. Using a performance analysis, the authors find
the maximal listen interval, which maximizes the average percentage of time that a
station stays in Doze (i.e sleep) state (and thus, consumes less energy) while satis-
fying the required quality of service on the mean and the variance of packet delay.
The authors of [11] propose a centralized power saving mode (C-PSM), in which the
802.11 access point selects the optimal PSM parameters, optimizing the total energy
efficiency for all clients. Using extensive simulation experiments the authors show
that the C-PSM outperforms the standard PSM of the 802.11 WLAN, and reduces
the power consumption by as much as 76%. Finally, a priority based power saving
mode (PBPSM) is proposed in [12]. The PBPSM assigns different channel access
priorities to different stations so that the energy efficiency of the stations that are
in the power-save mode increases.

3.1.2 Optimizing over multiple network connections

As already mentioned, today’s mobile devices are typically equipped with several
radio interfaces, such as the cell radio, WLAN and Bluetooth interfaces. Each of
these interfaces have their own characteristics (e.g. speed and range) which naturally
affect the power consumed by them. One approach for saving energy in the mobile
devices with multiple radio interfaces is to always choose the energy-wise cheapest
interface.

A paper by Perrucci et al. [13] presents the results of measurements that were
conducted in order to compare the energy consumption of text messaging, voice
and data for a mobile device in 2G and 3G networks. The device used for the
measurements was a Nokia N95 smartphone running the Symbian OS as operating
system. The results of the measurements show that text messaging and voice services
consume less energy in the 2G than in the 3G network. Instead, when large volumes
of data are downloaded, 3G connection consumes less energy. The results imply

12

that, in order to achieve longer battery life, a user should stay connected to the 2G
network by default, and only use the 3G network when data transmission in needed.

Pering et al. present in their paper [14] CoolSpots, which is a system that enables
a wireless mobile device to automatically switch between the WLAN and the Blue-
tooth interface when transmitting/receiving data in order to save energy. The work
is based on the fact that while WLAN is a lot faster than Bluetooth, it also consumes
a lot more power. While the idle power consumption of WLAN is of the order of
890 mW, Bluetooth’s idle power consumption is only 120 mW. CoolSpot explores
the policies to enable switching among the two radio interfaces based on the appli-
cation bandwidth requirements, power and distance. Using experimental validation
of the CoolSpot system the authors are able to reduce the energy consumption of
the wireless subsystem by more than 50%.

The selection of an energy-wise optimal interface in a mobile device is studied also
in [15]. The paper states that seamless handover and resource management are
essential for achieving good Quality of Service (QoS) in mobile devices and that
accessing e.g. UMTS and WLAN interfaces simultaneously can reduce the handover
latency and data loss in heterogeneous handover. But accessing multiple interfaces
simultaneously increases the mobile device energy consumption significantly. The
paper thus presents an efficient interface selection mechanism that takes into account
the battery power consumption in addition to the QoS.

A measurement study by Balasubramanian et al. [16] studies and characterizes the
energy consumption of network activity over GSM, 3G and WLAN, with the goal
of reducing the energy consumption of mobile applications that use these network
technologies. It is found that in both GSM and 3G, a large fraction of the energy
is wasted in the high-power states after the completion of a typical transfer. This
energy is referred to as the tail energy. The tail energy of GSM is smaller than that
of 3G, but, as GSM has a lower data rate, more time is spent in the high-power state
while transmitting. It is also found that in WLAN the association overhead (finding
an access point and connecting with it), is comparable to the tail energy of 3G, but
that the data transfer is more efficient. Based on the above findings, the authors
develop the ”TailEnder”, a protocol for scheduling the data transfers of common
mobile applications so that their energy consumption is reduced. TailEnder can be
used for two classes of applications: delay-tolerant applications (e.g. e-mail and
RSS feeds) and applications that can benefit from prefetching (e.g. web browsing).
The performance of TailEnder is evaluated on three applications (email, news feeds
and web search), and for each of them, TailEnder is shown to reduce the energy
consumption significantly.

13

3.1.3 Use of parallel TCP connections

The effect of using parallel TCP connections to the energy consumption of a mobile
device is studied by Nurminen in [17]. Nurminen states that ”as mobile phones are
increasingly used for web browsing, emailing, multimedia and other data commu-
nication activities, the management of the connections in an energy-efficient way is
important”. The idea of the paper is to study whether using parallel TCP connec-
tions, which is shown to improve throughput, will also improve the energy-efficiency.
TCP downloads during 3G voice calls or VoIP calls or when some other TCP streams
are active at the same interface are given as examples in which parallel TCP con-
nections can save energy. The paper shows that if the applications were engineered
to take advantage of the phenomenon, significant energy saving could be achieved.

3.1.4 Localization

The newest mobile devices are often equipped with a GPS interface that can be used
for localization and navigation purposes. The problem of continuous GPS usage in
mobile devices is its high power consumption, which drains the battery very quickly.
This is why the methods for lower-power localization have also been researched.

In [18], Kjaergaard et al. build a system named EnTracked, which schedules loca-
tion updates (location data retrieved with GPS and sent using 3G to an internet-
connected server) to both minimize energy consumption and optimize robustness.
The paper states that using large intervals between location updates reduces energy
consumption, but it also reduces the accuracy, since a pedestrian or a cycling target
can move quite far in a few minutes. EnTracked thus uses estimation and prediction
of system conditions and mobility in order to schedule the location updates, and it
is reported to achieve significant energy savings.

Another adaptive location service for mobile devices, called ”a-Loc” is presented in
[19]. a-Loc reduces the energy consumed by localization based on two facts. Firstly,
the location accuracy required by applications varies with location and secondly, in
addition to GPS, mobile devices have other methods for sensing location, such as
WLAN triangulation, cell-tower triangulation and Bluetooth vicinity. The authors
use ”searching for the nearest pizzeria” as an example. If the user is currently
in a densely populated area, high location accuracy is needed in order to localize
the nearest pizzeria. If the user instead is in a forest, 10 kilometers outside a
city, lower location accuracy is sufficient and a lower-power method, such as cell-
tower triangulation, can be used. The authors show that the a-Loc system can be
implemented on a real mobile phone (Android G1 and AT&T Tilt phones) and that
the energy required by localization is decreased if the system is used.

14

3.1.5 Proxy-assisted energy saving

A proxy server is a server that assists the client (a mobile device) in communicating
with content servers. The proxy works as an intermediary between the client and
the server forwarding, caching, retransmitting and even re-scheduling the packets
sent between the client and the server. Commonly proxies have been used for web
caching in order to provide content distribution and faster content download, and
as components of firewalls [20]. They have also been used for transcoding content to
make it better suitable for the target device. Recently it has been recognized that
proxies can also be used for reducing the power consumption of mobile devices.

Two proxy servers for reducing the WLAN power consumption are presented in
[20]. The baseline behind the work is that WLAN, which has an active and a sleep
mode, should spend more time in the sleep mode and make fewer transitions between
the two modes in order to reduce its energy consumption. The work concentrates
on web browsing and media streaming, which both have high power consumption.
The idea is to shape the traffic destined to the mobile device such that the packets
are delivered in bursts, extending the idle intervals of the mobile device’s WLAN
interface. The media streams are also transformed into less energy- and bandwidth-
consuming forms. The authors present a Power-Aware Streaming Proxy (PASP)
and compare it to a Power-Aware Web Proxy (PABP). Both proxies are shown to
reduce the WLAN energy consumption while streaming/web browsing.

Another approach for proxy-assisted energy saving in mobile (and other) devices is
given in [21]. The paper states that a lot of energy consumed by network-connected
hosts is wasted because without the network connectivity, the hosts could stay asleep
the majority of the time. Having to maintain the network connectivity disables the
power-saving features of many hosts. Two solutions are presented for this problem:
1) redesigning network protocols and applications and 2) using a Network Con-
nectivity Proxy (NCP) that maintains the network presence on behalf of the host,
allowing the host to stay in sleep mode.

3.1.6 Data compression

The transmission of a single bit over a wireless interface can consume more than 1000
times of energy compared to a single 32-bit computation [22]. Based on this fact,
compression of data that is about to be transmitted seems like a potential means
for reducing the energy consumption of mobile devices. Three papers, [22]-[24], all
make contributions on this subject.

In [22], Barr et. al state that in order to really save energy, the data compression
must be done with care. Many data compression algorithms require, in addition
to the computation, an extensive amount of memory accesses, which can greatly

15

increase the overall energy consumption of the compression. Thus, one might end
up increasing the energy consumption instead of descreasing it if data compression
is used carelessly. The paper studies and analyzes several lossless compression algo-
rithms and tries to find out the situations in which compression is beneficial. Based
on their findings, the authors develop an energy-aware data compression strategy
that uses data compression prudently and reduces the overall energy consumption.
The authors also note that decreasing the amount of transmitted data can also pro-
vide second-order benefits, such as reduction in packet loss and less contention in
the network.

The subject of data compression in order to save energy is further studied in [23].
It is noted that if the transmission rate of the wireless medium is high, the benefit
of the compression from the point of view of saving energy is reduced or even elimi-
nated. The paper studies the benefits achieved from data compression with respect
to the speed and signal strength of the wireless network to be used. When the sig-
nal strength is low, the data transmission would take longer and thus consume more
energy, which makes data compression highly beneficial. The signal strength might
however improve during the transmission, which is why an adaptive compression
scheme is needed. The paper shows by experimental means that the overall en-
ergy consumption can be remarkably decreased using such an adaptive compressing
scheme.

The use of data compression and its impact on energy consumption is also studied
in [24]. The authors of the paper state that the compression ratios achieved by the
compression algorithms depend highly on the type of the data that is compressed.
For example, image compression and text compression are likely to result in very
different compression ratios. Nine compression programs are examined in the paper
and they are evaluated based on the compression time, compression ratio and the
energy consumed. Using the Nokia N810 for experiments, the authors show that a
carefully chosen compression scheme can allow energy savings up to 57% (uplink)
and and 50% (downlink) when visiting popular web sites using a WLAN connection.

3.2 Displays

The displays of the modern mobile devices have become larger and brighter, enabling
high user-satisfaction for video playback, web browsing, navigating, gaming and
various other functions. But the growing size and resolution have also increased
the display power consumption so that the displays nowadays consume a significant
amount of energy in the mobile devices.

In the paper ”A Compressed Frame Buffer to Reduce Display Power Consumption in
Mobile Systems” [25], the authors also state that the power consumption of an LCD
display system is significant on mobile devices. They show that the display frame

16

buffer and buses are major energy consumers and that the energy consumption of
these components is proportional to the number of frame buffer accesses during the
display sweep operation. Thus, reducing the number of frame buffer accesses reduces
the power consumption of the display.

The authors design and implement an incremental, adaptive compression algorithm
based on run-length encoding (RLE). The algorithm is tested on five different kinds
of applications (a warehouse manager, an e-book reader, an image viewer, a map
viewer and a movie player) in order to find out the average compression gain and
compression overhead. The power reduction achieved by the frame buffer compres-
sion algorithm is significant: the power consumption of the target components (the
frame buffer and memory and its associated buses) is improved by about 50% to
66%. The overall power consumption in the prototype implemented by the authors
is reduced by 10% to 15% in most of the test cases.

In [26], Iyer et al. have a more user-centric approach on reducing the display power
consumption. The basis of the work is a major user study that concentrates on
understanding the screen usage patterns of real users in order to find opportunities
for display power reduction. The user study reveals that, on average, the users only
used 60% of the screen area available, thus identifying a promising opportunity for
reducing the display energy consumption. The user study further shows that in many
cases, the information could be displayed on much simpler, lower-power displays
without loosing visual quality. Based on this information, the authors develop the
”Dark Windows” windowing environment, which changes the brightness and color
of areas of the screen that are not of primary interest to the user in order to save
energy.

The results obtained from testing the ”Dark Windows” indicate that, with accept-
able trade-offs in the brightness and colour of the user interface, significant energy
savings can be reached. The user study was conducted on laptop and desktop com-
puters, which is why the results obtained are not directly applicable for hand-held
mobile devices with smaller displays, as Luo, one of the authors of [26] states in
her related PhD dissertation [27]. However, Luo points out subsequent user studies
by HP researchers, which show the acceptance of the Dark Windows design also on
hand-held mobile devices.

3.3 Computation offloading

The basic idea behind computation offloading is the same as behind proxy-assisted
communication that was described earlier: moving workload from the mobile device
to a more powerful entity in order to save energy in the mobile device. Whereas in
proxy-assisted communication the task of e.g. performing reliable communication
is moved from the mobile device to the proxy server, in computation offloading a

17

computationally heavy operation is moved from the mobile device to be computed
in a more powerful server.

The original idea of computation offloading was to increase performance by moving
computationally heavy operations from thin clients to rich servers. Only recently it
has been discovered that offloading computation using the available communication
channels can also help to reduce the energy consumption of the mobile devices [28].
When large amounts of computation is needed that could be offloaded with a rela-
tively small amount of communication, offloading becomes energy-wise beneficial.

In [29] the idea of computation offloading for smartphones is elaborated and a prac-
tical system design is presented. The offloading system is evaluated on two smart-
phone applications: the first one is a multimedia content analysis application that
performs object recognition of images and the second one is a distributed game
that also involves images and object recognition. Both of the applications require
relatively heavy computing, and using computation offload, the authors are able
to reduce the battery consumption (and speed up the computation) significantly.
Computation offloading is thus a promising method for further decreasing the mo-
bile device power consumption.

3.4 Summary

This chapter presented the numerous research that has been done to decrease the
energy consumption of mobile devices. First, the various methods for reducing the
energy consumption of wireless communications were introduced. Methods for re-
ducing the energy consumption of WLAN interface, which is commonly embedded
in the mobile devices, were studied, as well as optimizing over multiple wireless
interfaces in order to always choose the energy-wise cheapest interface for trans-
mission/reception. The research on reducing the energy consumption of GPS and
localization has also been studied and two systems, EnTracked and a-Loc, have been
presented as possible energy-saving solutions. Also the research on using proxies and
data compression for energy saving were presented.

The mobile device displays consume a significant amount of energy and research in
this area was presented. Based on the research, there is a great potential in saving
energy used by the displays. Finally, computation offloading was described and two
research papers studying its affect on energy consumption, were viewed.

18

4 Predicting battery life and charging time

The possibilities of predicting battery life on the target device, the Nokia N900
mobile computer, are studied in this chapter. First, the information that the N900
can provide about the battery is examined in order to know how an application
running on it could monitor the battery status. Tests are run to produce battery
dissipation curves, that give more information about the battery discharge behaviour
and can be used for the actual battery life prediction. The power consumption of
several tasks on the N900 is measured. Also the need for estimating charging time
is discussed and the possibilities of estimating it on the N900 are studied.

4.1 Predicting battery life on the N900

Maemo, the software platform of the N900 provides battery identification, monitor-
ing and charging service through the battery management entity (BME) [30]. The
system command ”hal-device bme” shows all the information that the BME provides
about the battery. An example output of this command is shown in Appendix A.
Using signals delivered by D-Bus (described in Chapter 5), a program running on
Maemo can read and monitor several pieces of information regarding the battery,
including the battery voltage, the battery charge level, information about whether
a charger is plugged in and the type of the charger.

In [31], Wen et al. study how to predict battery life using battery dissipation
curves obtained offline together with power dissipation history observed online. The
baseline behind their idea is that the battery dissipation curve, which is a function
of the battery voltage with respect to time, has the same shape for constant but
differing workloads. Figure 5 shows the battery dissipation curves for two constant
workloads. The curves start from the open circuit voltage (full battery), and finish
at the cut-off voltage (empty battery). As can be seen, the curves have the same
shape, but the workload F2 drains the battery faster. By transforming these offline-
measured voltage curves into a linear form, the authors are able to accurately predict
the battery life implied by any constant workload using only a partial voltage curve
of that workload obtained online. Using this method the authors are able to predict
the battery life with an error that is significantly smaller than the error produced
by the Advanced Power Management (APM), the standard power management tool
in Linux systems.

Based on [31], the voltage reported by the N900 seemed like the best candidate to
be used for battery life prediction. A program was written to log all the changes in
the battery voltage (battery.voltage.current in Appendix A) together with the times
at which the changes occurred. The following test was then run:

19

Figure 5: The dissipation curve of a Li-ion battery for two constant workloads [31].

1. charge the battery until it is full

2. start the logger program

3. start a constant-load task on the device, e.g. standby, video playback or audio
playback

4. run the task until the battery is empty.

By plotting the voltages recorded by the logger program as a function of the times
at which the voltage changes were received, battery dissipation curves similar to the
ones in [31] could be produced. Figure 6 shows an example of a battery dissipation
curve for audio playback on the N900. The test was performed also for standby and
video playback, and the shape of the dissipation curve was the same with different
constant loads, exactly like was observed in [31].

The battery management entity also reports the battery charge level in milliampere-
hours (battery.reporting.current in Appendix A). Ampere-hour is a commonly-used
unit for reporting the electric charge contained in a battery. For example, the theo-
retical maximum capacity of the default battery of the N900 is 1320 mAh, meaning
that it could deliver a current of 1320 milliamperes for one hour. Alternatively, it
could deliver a current of 132 mA for 10 hours. In order to examine the reliability
of the reported charge level, the logger program was modified to log the changes in
the charge level instead of the voltage, and the test described above was repeated.
Figure 7 shows the charge level during audio playback. The charge level drops lin-
early with respect to time when a constant-load task is run on the device, implying
that the reported value is reliable and that it is an excellent base for estimating the
remaining battery life. Only when the battery is nearly empty, the charge level in

20

Figure 6: Battery dissipation curve (voltage) of Nokia N900 with constant audio
playback.

millampere-hours is not updated correctly anymore. For example in Figure 7 the
device keeps reporting the same value of 5 mAh for about 100 minutes, during which
the device still works properly. Only after that the device shuts down. In the tests
that were run during this work, the lowest value that the device reported was always
5 mAh, but the reason for this phenomenon remained unclear.

Assuming that the current demand of a task, i.e. the amount of current that a task
consumes from the battery, is known, the estimated battery life for that task can be
calculated using the equation:

testimated =
CmAh

Itask
, (1)

where CmAh is the charge level informed by the device and Itask is the current demand
of the task in question in milliamperes. For example, if the battery reports a charge
level of 900 mAh and the current demand of a task is 10 mA, the battery will last for

21

Figure 7: Battery dissipation curve (charge level) of Nokia N900 with constant audio
playback.

90 hours running that task. Thus, in order to estimate for example the remaining
call time, audio playback time and web browsing time, the average current demand
of each task must be measured. The measurements that were conducted on the
N900 to find out the current demand of several different tasks are presented next.

4.2 Power consumption measurements

As was concluded above, the battery life estimation for a task can be calculated
by dividing the battery charge level (reported in milliampere-hours) by the current
demand of the task in question. Therefore, the average current demand of the tasks
for which the battery life wanted to be estimated, needed to be measured. This
section presents the tasks that were chosen for the measurements and the setup
used to measure the current demands. The results are discussed and compared to
the battery life information reported by Nokia.

22

4.2.1 Measurement cases

The measurement cases, divided into constant-load and variable-load tasks based
on whether the task in question requires user interaction, are listed below:

Constant load tasks:

• Standby, display off

• Standby, display on (default display brightness)

• Music playback (medium volume)

• Video playback (default display brightness, medium volume)

• 3G internet connection on

• WLAN internet connection on

• WLAN internet connection on and Skype client in online state

Variable load tasks:

• Calling

• Web browsing

• Text messaging

• Playing games

• Navigation

Measuring the current demand of the constant load tasks is straightforward: the
device is left performing the given task for the measurement period during which the
instantaneous current demand is recorded periodically. The average current demand
can then be calculated from the recorded values. No user interaction is needed, and
the measurements should produce similar results from one measurement to another.

Measuring the current demand of the variable load tasks needed to be thought
out more carefully, since the energy consumption of the tasks depends on user-
interaction. To measure the energy demand of calls, two things needed to be con-
sidered. First, when should the measurement be started: when the call is answered,
once the ”Call” button is pressed, or earlier? Since the goal was not to find out the
theoretically exact power consumption of calls, but to inform the user about how

23

long the device can be used for calling, also the selection of a contact/number prior
to the actual call was included in the measurements. Secondly, the length of the
test calls needed to be set. Based on information from the authors own call records,
the average length of a phone call is around 2 minutes. Thus, to measure the energy
demand of phone calls, ten phone calls of length from 90 seconds to 150 seconds
were made. Separate measurements were made for GSM and WCDMA calls.

The power consumption of web browsing depends on both what kind of web pages
are browsed and how frequently a new web page is downloaded (and also on the type
of connection that is used). A user reading text-based documents, downloading a
new page every 10 minutes consumes a lot less energy than another user browsing
photos in Facebook. The web sites that were used in the measurements were chosen
among the list of the most popular websites in the world, listed by DoubleClick [32].
The list includes, among others, Facebook, Google, Yahoo, and BBC. Chinese web-
sites were excluded. Separate measurements were done for WLAN and 3G internet
connections.

For measuring the power consumption of text messaging, twenty text messages of
100 characters were written and sent on the device. Also the average time that it
took to write one message was measured. This was done because it would not make
sense to report the remaining text messaging time. Instead an estimate on how
many text messages can be written with the remaining battery capacity should be
provided.

To measure the power consumption of playing games, two games were chosen:
”Blocks” which is by default installed on the N900 and ”Angry Birds”, an increas-
ingly popular game that can be downloaded to the N900 from Ovi Store, Nokia’s
application repository [33].

For navigation, the default map application of the N900, Nokia Ovi Maps, was used.
Before starting the measurements, the map application was started and enough time
was waited in order to find the initial GPS coordinates. The 3G network connection
was enabled during the navigation. Since the measurements were conducted inside,
no movement was involved. Hence, during the measurement the map application was
only used for browsing the map, finding different locations and calculating routes
between the locations.

4.2.2 Measurement setup

The setup for measuring the current demand of the tasks consisted of the mobile
device, a resistor of 0.1 Ω, an external voltage source and a voltage meter. The
battery of the mobile device was removed and the device was connected to the
external voltage source. The voltage source and the mobile device were connected

24

in series together with the resistor. The voltage meter was then connected in parallel
to the resistor. The circuit diagram of the measurement setup is presented in Figure
8.

The voltage source was then adjusted to output a constant 4.1 V to power up the
mobile device and the task to be studied was started. Since the resistance of the
voltage source is high (a lot higher than that of the resistor), it can be assumed that
all the current goes through the resistor. The voltage source keeps measuring the
instantaneous voltage and using Kirchoff’s laws, the instantaneous current demand
of the N900 can be calculated using the following equation:

I =
4.1V − U

R
, (2)

where U is the instantaneous voltage measured by the voltage meter and R is the
0.1 Ω resistance.

Figure 8: Circuit diagram for measuring the current demand of a mobile device.

4.2.3 Results

The average current demand of all the tasks listed in Section 4.2.1 are presented in
Figure 9. The tasks with energy consumption lower than 200 mA are all actions,
where the display is off. Sending text messages does not consume much more energy
than only having the screen on. The tasks that consume more than 300 mA all keep
the screen on and either transmit data using the internet connection (web browsing)
or otherwise require a lot of computing (e.g. playing Angry birds).

25

One should take into account that the measurements were conducted without any
movement. The energy consumed by for example calling, navigation and web brows-
ing (using a 3G connection) could further increase if the device was moving.

Figure 9: The current demand of different tasks on the N900.

Nokia reports some N900 battery life estimations in the technical details of the N900
[34]. The estimations provided are the following:

• Talk-time: Up to 6.3 / 4.3 hours (GSM / WCDMA)

• Standby time: Up to 278 /250 h (GSM / WSCMA)

• Active online usage: Up to 1 day

• Continuous browsing time: Up to 5.5 / 8 hours (WCDMA / WLAN)

• Video playback time: Up to 5.6 hours

• Music playback time: Up to 24.5 hours

These times are presumably based on the theoretical maximum battery capacity of
1320 mAh and they can converted to the current demand by dividing 1320 mAh
with the time given. For example 6.3 hours of GSM talk time means that the current
demand of GSM phone calls would be 210 mA (= 1320 mAh / 6.3 h). Table 1 below
shows a comparison between the current demands calculated from the battery life
figures reported by Nokia and the current demands obtained from the measurements

26

in the previous section. The current demands reported by Nokia for standby, calling,
video and audio are around 10% lower than the current demands measured here.
The current demands reported for web browsing with both WLAN and WCDMA
are close to 50% less of the ones measured here.

Table 1: Drain rate comparison.

Task Nokia (mA) Our rates (mA)
Standby (GSM/WCDMA) 5/7 5.5/8
Calls (GSM/WCDMA) 210/300 183/330
Video 270 320
Audio 56 58
Web browsing (WLAN) 165 314
Web browsing (WCDMA) 240 402

4.3 Charging time estimation

While researching the options for predicting battery life, the idea of predicting also
charging time came up. According to a case study made in 2008 by World Business
Council for Sustainable Development (WBCSD) [35], two-thirds of the power con-
sumed by a Nokia mobile phone comes from the energy consumption of the chargers’
no-load mode. The no-load mode means that the charger is plugged into the mains
and thus, consumes energy, but the device is not actually being charged. The no-
load mode occurs when the charger is not unplugged from the mobile device when
the battery of the device is already full or when the charger is left plugged into the
mains when the device is not connected to it anymore. Mobile device manufacturers
are aware of this waste of energy and the no-load energy consumption of the charg-
ers has been continuously reduced. For example Nokia reduced the no-load energy
demand of their chargers by 70% from year 2000 to 2006 [35].

The no-load mode energy consumption could be further decreased with the help of
users. According to [35], Nokia was the first to introduce battery-full alarms and
a notification that asked the user to unplug the charger from the wall when the
charging is finished. But if the device is left charging during the night, the charger
will not be unplugged from the wall until the morning. If the device instead informed
that ”the battery will be full in two hours” when the charger is plugged in, the user
might for example charge the device in the evening and unplug the charger before
going to sleep. Thus informing the user about the remaining charging time could
both increase user satisfaction (by giving her more information) and help in saving
energy.

The battery management entity provides three values that can be used to detect

27

when a charger is plugged in (maemo.charger.connection status, maemo.rechargeable.-
charging status and battery.rechargeable.is charging in Appendix A). Knowing the
charge level of the battery, the charging time prediction could be calculated using
the following equation:

testimated =
Cmax − Cnow

Icharger
, (3)

where Cmax is the maximum charge level of the battery, and Icharger is the charg-
ing rate of the charger used. The maximum charge level is reported by the BME
(properties named battery.reporting.design or battery.-reporting.last full, shown in
Appendix A) but the charging rate is not. Furthermore, the N900 comes with two
chargers: a wall charger and a USB charger, the charging rates of which differ from
each other. The chargers can be identified by the charger type reported by BME
(maemo.charger.type in Appendix A). For example the type of the default wall
charger (Nokia AC-10E) of the N900 is ”wall charger”.

To study the charging curves and to find out the charging rates of the two chargers,
the logger program from the previous section was run while charging the phone. The
battery was first drained to almost empty. The logger program was then started
and a charger was plugged in. Once the battery was full, the logger program was
stopped and the charge levels were plotted with respect to the times at which the
charge levels were reported. It appeared that once the charger is plugged in, the
battery charge level is not updated anymore. An update is received only when the
battery is full or the charger is unplugged. As a result, the log files only showed
the battery charge level at the moment before plugging in the charger and the final
charge level once the battery was full. To obtain the charging curves, the charger
was periodically unplugged from the device during the charging in order to receive
updates of the charge level. The charging curves for the default wall charger and
for the USB charger (Nokia CA-101) are shown in Figures 10 and 11.

Even though the device was in standby state, i.e. the current demand of the device
was constant during the charging, the charging curves are not linear. This is due to
the way that lithium-ion batteries are charged. First, a constant charging current
is applied until a given voltage limit per battery cell is reached. After this, the
charging current is continuously decreased until full charge is reached. For example,
a battery could be charged up to 80 % of full charge in one hour, after which another
hour would be needed for the remaining 20 %.

The average charging rates calculated based on the measurements were 680 mA for
the wall charger, and 345 mA for the USB charger. Using these charging rates,
the charging time could be roughly estimated. The estimation could be further
improved by calculating it piece-wise. For example. the charging rate of the wall
charger remains constant (around 900 mA) until 800 mAh is reached, after which

28

Figure 10: Battery charging curve for the N900 default wall charger (Nokia AC-10E).

the rate slowly decreases.

The problem of this approach is that there are several different types of chargers
for the N900, each of which can have a different charging rate but the same type.
For example, another wall charger (Nokia AC-5E) that can be connected to the
N900, appears in the system with the same type (”wall charger”) as the default wall
charger of the N900 but it has a different charging rate. This would result in an
incorrect charging time estimation.

4.4 Summary

The possibilities for predicting battery life and charging time on the N900 mobile
computer were examined in this chapter. The initial idea was to use the battery
voltage level reported by the N900 for the prediction, as was done in [31]. After
further research it was found out that the device is able to directly report the
charge level of the battery in a reliable manner. Dividing the battery charge level
by the current demand of a task (e.g. audio playback) produces the battery life
estimation for the task in question. The power consumption measurements that

29

Figure 11: Battery charging curve for the N900 USB cable (Nokia CA-101).

were conducted to find out the current demand of different tasks together with the
results were also presented. Thus, it was found out that providing the N900 users
with reliable battery life estimations for different tasks is feasible and relatively
straightforward.

The last section of the chapter stated that leaving the mobile device chargers plugged
into the mains after the charging is finished stands for a significant amount of energy
used by mobile devices. Providing mobile device users with charging time estima-
tions could both increase user satisfaction and help in saving energy. The charging
curves for two different chargers of the N900 were obtained, and it appeared that
the charging rates do not remain constant when charging the battery from empty
to full. Also, identifying the chargers appeared to be a problem, since two charg-
ers with different charging rates can appear in the system with the same name. A
charging time estimate could anyway be provided for example for the default wall
charger of the N900 using a piece-wise defined charging rate.

30

5 Implementing the battery monitoring applica-

tion

The implementation of a battery monitoring application for the Nokia N900 mobile
computer is described in this chapter. The application was named BattInfo, and
this name is used from here onwards to refer to it. The first subsection of this
chapter states the goals and requirements that were set on the application. The
software platform of the N900 and the services provided by it are described in the
second subsection. Sections 5.3-5.5 present BattInfo and explain how it actually
works. Also the three additional features of BattInfo (two battery-low alarms and a
power-save mode) are described. A user test that was conducted in order to evaluate
BattInfo and to receive feedback from it is presented in the following chapter.

5.1 Goals and requirements

The goal of this work was to develop a battery monitoring application that gives the
user more elaborate information about the remaining battery capacity and battery
life. The current method for showing the remaining battery capacity in most devices
is the battery charge meter, that only has coarse accuracy. Furthermore, the battery
charge meter does not give any information about the remaining battery life, which
would be more useful to the users.

The battery monitoring application should provide the user with battery life esti-
mations for different tasks that are typically performed with the mobile device, such
as remaining talk time, audio playback time, video playback time, navigation time
and web browsing time. Also a battery life estimation based on the usage history,
which will help the user to estimate how long the battery will last with her typical
usage pattern, should be provided.

The information should be presented to the user via a self-describing graphical user
interface (GUI), and all of its functions should be easy to use. Part of the information
that the application is able to provide shall be presented to the user via a desktop
widget, that is always visible and allows the user to find out the status of the battery
with a quick look. The desktop widget should be customizable so that the user can
choose which battery life estimations, e.g. talk time and audio playback time or
talk time and accurate battery capacity, are shown. The full set of information that
the application provides should be hidden by default, but easily accessible from the
desktop widget by one or two clicks.

31

5.2 Maemo

Maemo is a software platform developed by Nokia for mobile devices [36]. The first
Maemo device was the Nokia 770 Internet Tablet, released in 2005. The newest
version of Maemo is Maemo 5, also known as Fremantle, which is used on the N900.
Maemo is based on the Linux operating system kernel and uses Debian package
management.

D-Bus

D-Bus is a message bus system used for interprocess communication (IPC) and re-
mote procedure calls (RPC) on Maemo. There are two well-known buses, the system
bus and the session bus. The system bus delivers signals from the Hardware Abstrac-
tion Layer (described below), such as ”new hardware device added” or ”hardware
state changed”. The D-Bus session bus is specific to each user session, and could
provide a service such as opening the user’s web server. Applications that want to
use D-Bus must have a service name. Each service can have one or more objects,
each of which can then have one or more interfaces. In addition to the service name,
they have a path for their objects, and methods/signals with some interfaces. Each
interface has a defined set of properties that can be accessed using the methods and
signals provided by the interface. Table 2 shows two examples of complete D-Bus
addresses.

Table 2: D-Bus addresses.

D-Bus addresses Battery status Network status
Service name org.freedesktop.hal com.nokia.phone.net
Object path /org/freedesktop/Hal/devices/bme /com/nokia/phone/net
Interface org.freedesktop.Hal.Device Phone.Net
Signal PropertyModified radio access technology

The set of D-Bus objects varies from a Linux system to another, depending on the
underlying hardware. A command line tool called dbus-monitor [37] can be used to
display the signals sent by both applications and the system on D-Bus. This tool
was used for finding the set of signals sent on the N900, that could be used by the
battery management application.

32

Hardware Abstraction Layer and Battery Management Entity

The Hardware Abstraction Layer (HAL) is a software project for Unix-like comput-
ers [38], that offers a toolkit for discovering and configuring the computer hardware
and allows for applications to discover and use the many different hardware and their
special properties through a uniform API. The Battery Management Entity (BME)
is a part of HAL and, as the name suggests, it reports information concerning the
battery. BattInfo uses the information provided by BME/HAL and delivered by
D-Bus for calculating and updating battery life estimations.

Application development on Maemo

The Maemo development environment supports by default the C language for ap-
plication development, but support can be added for C++ and Python languages
as well. After the PR1.2 update to Fremantle, also Qt has been supported. Qt
is a C++ cross-platform application and UI development framework [39], and in
addition to Maemo, it currently supports also the following platforms: embedded
Linux, MAC OS X, Windows, Linux/X11, Meego and Symbian. Applications such
as Google Earth, Skype and Opera web browser are developed using Qt. With the
idea of later porting the application also for other mobile platforms, Qt was chosen
as the programming language for BattInfo.

5.3 Application overview

When BattInfo is launched, a desktop widget is placed on the current desktop of the
device. Figure 12 shows a screenshot of the BattInfo desktop widget, displaying the
accurate battery charge level and the estimated remaining standby time. From the
settings dialog, shown in Figure 13, the user can customize the information shown
in the desktop widget. The three other options shown in the figure are explained
later.

When the desktop widget is clicked, the BattInfo main window is opened (Figure
14). From the main window, the user can easily navigate to the settings and other
options of BattInfo. Clicking the ”Show battery state” button opens the ”battery
state” view, shown in Figure 15. Initially, clicking the desktop widget opened di-
rectly the ”battery state” view, but based on a few preliminary user tests, this
design did not encourage the users to explore the application. The main window
of Figure 14 was thus added in order to facilitate and motivate navigation inside
the application. However, the user test (presented in Section 6) in the end showed
that the main window was considered useless and was thus removed from the final
version of BattInfo.

33

Figure 12: BattInfo desktop widget.

Figure 13: BattInfo settings dialog.

The values under ”Estimated battery life”, excluding the usage-based estimate, are
calculated based on the battery charge level and on the demand of current of the
tasks. In the example figure, the battery could provide for example 1 hour of video
playback or alternatively 6.5 hours of music playback. In addition to informing the
user about the remaining battery life, the values reported on the left side of the win-
dow can help the user to understand which activities have high power consumption
and which do not.

The battery life estimations are calculated according to Equation 1, where Itask is
the current demand of the task in question and CmAh is the battery charge level. If
the task is calling, the current demand depends on the device’s network status, i.e.

34

Figure 14: BattInfo main window.

whether the device is connected to a GSM or to a WCDMA network.

BattInfo also takes into account the amount of power consumed by an internet
connection when calculating the estimated battery lives. If an internet connection
is enabled, the battery life will naturally be shorter. Figure 16 shows a screenshot
of the BattInfo main window with same battery charge level as in Figure 15 but
with a WLAN connection on. As can be seen by comparing the two screenshots,
the estimated battery lives are much shorter when the internet connection is on.
The power consumption of the internet connection is not taken into account when
calculating the usage-based battery life.

Equation 1 produces the estimated battery life t, the unit of which is hours. The
calculation can result in values such as 0.643 hours or 243.25 hours, which are not
very user-friendly. Therefore the estimated battery life is rounded according to the
following rules:

1. If t < 1h: convert t to minutes and round it to the closest full minute

2. Else if 1h < t <= 10h: round t to the closest half an hour

3. Else if 10h < t <= 48h: round t to the closes full hour

4. Else (i.e. t > 48h): convert t to days (48h) and round it to the closest full day.

35

Figure 15: BattInfo battery state.

BattInfo monitors the battery state (battery charge level) and the network state
(whether the device is connected to a GSM or to a WCDMA network) using sig-
nals sent on the D-Bus by two entities: the battery management entity and the
”Phone.net” entity. The complete D-Bus addresses of these two are shown in Table
2. The status of internet connections is monitored using a signal provided by the
QNetworkConfigurationManager class.

5.4 Estimating battery life based on usage history

As shown in Figure 14, BattInfo also calculates a usage-based battery life estimation,
which is based on the power consumption history of the device. This gives the user
an idea of how long the battery will last if the device is used more or less in the
same way as it was used before.

The initial idea for recording the power consumption history was to log the battery
charge level every one hour (or using another fixed interval), and then calculate the
average current demand during every interval. The usage-based battery life estima-
tion could then be calculated using Equation 1. This method was implemented, but
it appeared that the battery management entity of the device stops reporting the
battery charge level when the device goes into ”inactive state”, for example when
the screen is turned off. The reason for this is presumably power-saving: there is no
reason to update the battery charge level if nobody can see it. Consequently, the

36

Figure 16: BattInfo battery state, internet connection enabled.

approach of logging the battery charge level periodically did not work, and another
method needed to be thought out.

The approach that was next implemented and that was found to work correctly, was
to record the times at which new battery charge level updates are received. The
average current demand can then be calculated online using the equation below:

Iusage−based =
Ci − Ci−1

ti − ti−1

, (4)

where Ci and ti are the newest charge level update received and the current time,
and Ci−1 and ti−1 are the previous reported charge level and the time at which it
was reported. After this the usage-based battery life estimation can be calculated
using Equation 1.

In general, a history-based estimation is the more accurate the longer the history
taken into account when calculating the estimation [31]. The length of one week was
considered long enough to provide reliable usage-based battery life estimations and
it is used as the default history-length in BattInfo. In some cases the user might be
interested in having a battery life estimation based on only the recent usage-history,
which is why BattInfo allows for the user to change the length of the history that is
considered when calculating the usage-based estimation. The user can choose from
three options: short (2 h), medium (24 h), long (1 week). The set of options was

37

reduced to this set of three in order not to give the user too much choice, which
might just be confusing. The history-length can be changed from the settings dialog,
shown in Figure 13.

5.5 Additional features

BattInfo has three features in addition to the battery life estimation, each of which
is targeted to detect and cope with low battery. The first one of them is a battery-
low alarm that can be configured by the user. The user can decide whether the
alarm is active or not, and set the charge-level in percentage (e.g. 10, 20 or 30 %)
at which the alarm is triggered. The purpose of this alarm is to enhance the default
battery-low alarm of the N900, which is played only when the battery charge level
reaches 0 %.

The second additional feature is an overnight battery-low alarm, the purpose of
which is to notify the user in the evening if the battery would be critically low the
next morning. If the alarm is activated, BattInfo checks the battery charge level at
a specified time in the evening and calculates the remaining standby time. If the
capacity would be critically low the next morning, the alarm is be played. Both
the battery-low alarm and the overnight battery-low alarm can be turned on and
configured from the settings dialog (Figure 13).

After testing, a major problem with these alarms was noticed. As it was already
stated, the battery charge level is not updated while the device is inactive. This
means that if the device has stayed in standby state for a longer time, the reported
battery charge level can suddenly drop many units when the device is activated
again. To demonstrate the problem with the alarms, let us consider a case where
the user has set the battery-low alarm to notify when the battery charge level reaches
30%. At 32%, the device is left idle and the screen is turned off. After a couple
of hours the user turns the screen on again, and a charge level update of 26%
is received. Thus, the battery-low alarm has not been triggered correctly. The
overnight battery-low alarm suffers from the same problem. A possible fix for this
problem would be to programmatically activate the system, e.g. by turning on the
screen and then immediately turning it off it in order to receive a charge-level update
when needed. This fix would require additional energy, which is not wanted if the
battery is already low, and therefore the fix was not implemented. However, the
alarms were not removed from the application. They were kept in BattInfo, but a
note informing the user about their possible malfuctioning was added to the help
dialog of the application.

The third feature added to BattInfo is the power-save mode. The idea of the power-
save mode is to easily allow the user to save battery capacity when the battery charge
level is low. The three things that the power-save mode does in order to reduce the

38

power consumption of the device are: 1) dimming the screen 2) closing the internet
connection and 3) forcing the phone to GSM network. These power-saving actions
are activated by running the following system commands:

1. gconftool -s -t int /system/osso/dsm/display/display brightness 1

2. run-standalone.sh dbus-send –system –dest=com.nokia.icd /com/nokia/icd ui
com.nokia.icd ui.disconnect boolean:true

3. run-standalone.sh dbus-send –system –type=method call –dest=com.nokia.phone.net
/com/nokia/phone/net Phone.Net.set selected radio access technology byte:1

When the power-save mode is exited, the display brightness is set back to the bright-
ness level before entering the power-save mode and the radio access technology is set
back to ”dual mode”. Internet connections are not re-established. The activation
of power-save mode is indicated in the BattInfo desktop widget by a green icon, as
shown in the figure below. BattInfo exits from power-save mode automatically when
the charger is plugged in. The user can also exit the power-save mode manually by
clicking a button in the main window: when the power-save mode is activated, the
button ”Enter power-save mode” in Figure 14 changes into ”Exit power-save mode”.

Figure 17: BattInfo desktop widget when power-save mode is activated.

5.6 State machine and module structure

The state machine of BattInfo is depicted in Figure 18. When the application starts,
it loads the possible settings. The settings are used to save the user’s choises for what
is shown on the desktop widget, the settings of the two alarms, and the collected
usage-history. Thus, after e.g. a restart of the device, the application will startup
with the same configuration as before. After this, the initial state of the device, i.e.
the status of the battery, network and internet connection, is queried.

Based on the state of the device, BattInfo calculates the necessary battery life es-
timations and shows the desktop widget on the desktop. At this point BattInfo

39

Figure 18: BattInfo state machine.

connects to the signals from D-Bus, QNetworkConfigurationManager and to the
signals triggered by user input. Also the possible alarm for the advanced notifi-
cation is set. When the time of the notification arrives, a signal is delivered to
BattInfo, and it will calculate whether it is necessary to play the alarm.

The receival of the signals triggers different actions in the application, as shown
in the state machine. For example, when the battery charge level changes, all the
battery life estimations (or those visible to the user) are updated and usage-history
is collected, but when the network technology changes from e.g. 2G to 3G, only
the remaining call time is updated. Upon receiving a signal, BattInfo performs the
necessary calculations and accordingly updates the desktop widget (and the main
window if it is visible). After this, BattInfo stays in the idle state until the next
signal is received.

BattInfo consists of three objects: the desktop widget, the main window and the
settings dialog. The desktop widget contains most of BattInfo’s functionalities, in
addition to showing and updating the desktop widget. It loads/writes the settings
from/to a file when the application starts/exits, takes care of reacting to the differ-
ent signals and, when requested, opens the main window or the settings dialog. The
main window and the settings dialog are separate objects, that only send/receive
signals to/from the desktop widget. The main window, for example, does not follow
the status of the battery itself. Instead it receives signals from the desktop widget

40

and updates itself accordingly. Similarly, the settings dialog does not read or write
the application settings to a file: the desktop widget maintains the settings informa-
tion and communicates them to the settings dialog via signals when necessary. The
communication of BattInfo and the device and BattInfo’s internal communication
is depicted in Figure 19.

Figure 19: BattInfo’s module structure.

5.7 Summary

This chapter started by defining the goals that were set to the battery manage-
ment application. It stated that the application should give the user more elaborate
information on the remaining battery life and present the information via an intu-
itive, easy-to-use graphical user interface. The implementation platform (Maemo)
and its most important components were described next, after which the actual
implementation, named BattInfo, was presented.

BattInfo monitors the battery charge level, and based on the average current de-
mands of different tasks (measured in Chapter 4), calculates several battery life
estimations. All the information is shown to the user via a graphical user interface,
which consists of a desktop widget and a bigger, full screen window. BattInfo takes
into account the complete state of the device (battery, network and internet connec-
tion state) when calculating the battery life estimations. Also the three additional
features of BattInfo, two battery-low alarms and a power-save mode, were described.
It was noticed that the battery-low alarms do not work properly in all situations,
but they were not removed from the application. Instead a note was added to the
application’s help dialog to inform the user about the possible malfunctioning.

41

6 User testing

In order to get feedback about BattInfo and to examine its usefulness and usability,
a user test was conducted. The user testing was conducted in collaboration with
usability specialists from Helsinki Institute for Information Technology (HIIT). This
chapter describes the user tests, their results and how the results influenced the
development of Battinfo.

6.1 Arrangements and questionnaires

First, in order to make the application easily installable for the test users, a Debian
package was created and it was placed inside a repository. The repository was made
available online, and the users were sent links to the repository, allowing one-click
install. The process of distributing the application to the users and making it easily
installable is described in Appendix B.

The user study started with a background questionnaire, which collected demo-
graphic information (such as age, gender and nationality) about the users and the
users received a link to the BattInfo repository upon answering a demographic ques-
tionnaire. After installing and starting to use BattInfo, three questionnaires were
sent to the users: the first one after three days, the second one after one week and
the last one after two weeks of usage.

The first and the third BattInfo questionnaires consisted of two types of questions:
1) statements, such as ”BattInfo helps me to manage my phone battery” and ”I
find BattInfo easy to navigate”, to which the users had to respond by choosing the
most appropriate alternative from the five following options: ”I totally disagree”,
”I disagree”, ”I neither agree or disagree”, ”I agree” and ”I totally agree”, and 2)
word pairs, such as ”Practical - Impractical”, ”Dull - Captivating” and ”Confusing -
Clearly structured”, where the users had to choose from a seven-scale the word they
considered more appropriate for describing BattInfo. The majority of the questions
in the first and the third questionnaires were the same. The second questionnaire was
the Attrakdiff Single Evaluation feedback form [40], which also consists of word-pair
questions.

6.2 Results

The test users were mainly researchers and professors from Aalto University’s De-
partment of Communications and Networking (Comnet). The majority of them was
Finnish, male, and 25-44 years old. The test users were clearly more technically

42

oriented than an average user. Initially, 16 users enrolled in the study and 15 of
them answered to the demographic questions. 12 users completed the first question-
naire about BattInfo and 10 users the second one. The whole survey was completed
by nine users. Four of the users who answered to all the questionnaires were also
interviewed face to face after the test period in order to get more detailed feedback.

The four statements below were contained in both the first and the third question-
naire:

1. Taking BattInfo into use has been easy.

2. BattInfo helps me to manage my phone battery.

3. I find BattInfo easy to navigate.

4. I use BattInfo to plan my battery usage.

The distribution of the answers to these four statements are shown in tables 3 (results
from the first questionnaire) and 4 (results from the third questionnaire). Overall
it can be concluded that BattInfo was relatively easy to be taken into use and most
users also thought that it was also easy to navigate within the application.

Table 3: Distribution of the answers to the statements for the first questionnaire.
(*The actual questionnaire used ”I neither agree or disagree” instead of ”Neutral”.)

I totally disagree I disagree Neutral* I agree I totally agree

Statement 1 8.3% 8.3% 0.0% 58.3% 25.0%
Statement 2 8.3% 25.0% 8.3% 58.3% 0.0%
Statement 3 0.0% 8.33% 33.3% 41.7% 16.7%
Statement 4 0.0% 50.0% 33.3% 16.7% 0.0%

Table 4: Distribution of the answers to the statements for the final questionnaire.
(*The actual questionnaire used ”I neither agree or disagree” instead of ”Neutral”.)

I totally disagree I disagree Neutral* I agree I totally agree

Statement 1 0.0% 0.0% 0.0% 66.7% 33.3%
Statement 2 11.1% 0.0% 0.0% 77.8% 11.1%
Statement 3 0.0% 22.2% 22.2% 44.4% 11.1%
Statement 4 11.1% 33.3% 22.2% 33.3% 0.0%

In the word-pair questions of the first and the third questionnaire, the users had to
choose from a seven-scale the most appropriate alternative. The distribution of the
responses, for both the first and the third questionnaire, is shown in Table 5. On each
row, the upper values are from the first questionnaire and the lower values from the

43

final questionnaire. Based on the results, BattInfo is considered more undemanding
than challenging, more practical than impractical, pleasant instead of unpleasant,
attractive instead of ugly and rather trustworthy. In addition, most users would
probably continue using the application in the future. The questionnaires also asked
whether the users had used the power-save mode. Most of the users had never used
it, but some users reported using it somewhat regularly.

Table 5: Distribution of the answers of the word-pair questions for the first and the
third questionnaire. For each row, the upper values are from the first questionnaire,
and the lower values from the final questionnaire. (*C.s = Clearly structured, Not tr.
= Not trustworthy.)

1 2 3 4 5 6 7

Undemanding
16.7% 41.7% 0.0% 25.0% 8.3% 0.0% 8.3%

Challenging
11.1% 22.2% 44.4% 22.2% 0.0% 0.0% 0.0%

Dull
16.7% 8.3% 16.7% 25.0% 25.0% 8.3% 0.0%

Captivating
0.0% 11.1% 11.1% 33.3% 22.2% 22.2% 0.0%

Practical
0.0% 25.0% 33.3% 0.0% 16.7% 8.3% 0.0%

Impractical
0.0% 44.4% 33.3% 11.1% 0.0% 22.2% 0.0%

Confusing
8.3% 0.0% 33.3% 16.7% 8.3% 25.0% 8.3%

C.s.*
0.0% 0.0% 0.0% 33.3% 22.2% 44.4% 0.0%

Pleasant
0.0% 41.7% 8.3% 41.7% 8.3% 0.0% 0.0%

Unpleasant
0.0% 44.4% 33.3% 11.1% 11.1% 0.0% 0.0%

Ugly
8.3% 0.0% 8.3% 33.3% 16.7% 33.3% 0.0%

Attractive
0.0% 11.1% 11.1% 22.2% 33.3% 22.2% 0.0%

Trustworthy
0.0% 33.3% 16.7% 33.3% 8.3% 0.0% 8.3%

Not tr.*
0.0% 33.3% 22.2% 33.3% 0.0% 11.1% 0.0%

Would not use
0.0% 8.3% 0.0% 25.0% 16.7% 16.7% 33.3%

Would use
0.0% 11.1% 0.0% 22.2% 22.2% 33.3% 11.1%

The results of the Attrakdiff questionnaire are shown in Figure 20 below. The figure
reveals that the user interface of BattInfo was considered ”neutral”, and that there
is room for improvement in terms of usability and in terms of hedonic quality. The
”dullness” of the graphical user interface of BattInfo came out also in the personal
interviews - BattInfo clearly was not considered graphically stylish and appealing.

In addition to the above-mentioned dullness of the GUI, also the following lackings
and issues came up in the free textual feedback of the questionnaires and in the user
interviews:

• The main window (Figure 14) was considered useless and disturbing.

• The several horizontal and vertical lines in the battery status view (Figure
15) are disturbing, and furthermore, the ”Estimated battery life” headers are
misplaced, since the estimated times are actually shown in the second column.

• The ”Status” label, which shows whether the internet connection is on or off
(Figure 15), is unclear and occupies too much space.

44

Figure 20: How user-friendly and attractive is BattInfo [40]?

• The battery state view was considered boring.

• The two battery capacities (% and mAh) have different icons even though they
report basically the same thing.

• It should be possible to place more (or fewer) than two items in the desktop
widget.

• The green icon for power-save mode (Figure 17) was not clearly enough asso-
ciated with power saving: one user was not sure what it meant.

• Two users would have liked to have the possibility of setting a longer usage-
history than the maximum of one week that BattInfo used, e.g. two weeks or
one month.

The questionnaires did not have questions about the usage of the battery-low alarm
and the advanced notification provided by BattInfo, but at least the users that were
interviewed did not use these functionalities. One user also wrote in the free textual
feedback that:

”The battery life on the N900 is so bad that it has to be charged every
day. This is partly because I use it for browsing as well. Because I have
to charge the phone every day anyway, the alarm system on the battinfo
is not important for me. It might be more important if my battery lasted
longer, as it would for example with an N8 phone.”

45

6.3 Conclusions and changes to BattInfo

All in all, the feedback from the user test was encouraging and positive and indicates
that BattInfo fulfills the requirements that were set to it in Section 5.1. BattInfo
was seen as a useful application that gives valuable information to the users about
the battery. Also the representation of the information was clearly understandable.
The visual look of BattInfo was still clearly unfinished. Users were hoping for a
”more professional look”, especially regarding the battery state view, which was
found visually unpleasing by most users.

In order to improve the user experience, the main window (Figure 14) was completely
removed, so that the full battery status can be opened by one click from the desktop
widget. The battery state view was modified according to the feedback. Unnecessary
lines and misleading header labels were completely removed and a battery icon was
added to the window to improve the visual look. The new look of the battery state
view is shown in Figure 21.

Figure 21: Battery state view after modifications.

Also the indicator for the power-save mode, shown in Figure 17, was intented to be
changed. Creating an icon that would both catch the user’s attention and remind
the user of the power-save mode while not being too ”striking” was difficult. Thus
the power-save mode indicator was left as it is until a better solution is found. The
battery-low alarm and the advanced notification were completely removed since they
did not work properly in all situations.

46

6.4 Summary

The user test conducted on BattInfo was presented in this chapter. The testing
consisted of a background questionnaire and of three questionnaires, that were sent
to the users after three days, one week and after two weeks of usage. The user test
aimed to find out whether BattInfo fulfills the goals and requirements set to it in
Section 5.1.

The results of the testing showed that BattInfo does indeed help the users to cope
with their batteries and gives them important information about the battery life.
The visual look of BattInfo was generally considered boring and not professional
enough. Based on the feedback, BattInfo’s appearance was slightly changed into a,
hopefully, more appealing direction.

47

7 Conclusions and future work

This work started by describing the evolution of mobile devices during the last 10-
15 years, and by discussing how this evolution has affected the battery life of the
devices. The devices have developed relatively fast from simple portable phones into
multifunctional mobile devices. Their use cases have changed, and they are now used
throughout the day for various purposes, instead of only calling and sending text
messages a few times a day. The devices have gained a bigger role in our daily lives,
but at the same time, the battery life of the devices has become shorter and less
predictable. The numerous research in the area of reducing mobile device energy
consumption was also presented.

The target device of the work, the Nokia N900 mobile computer, was studied in
Chapter 4. It was found out that the device is able to report the charge level of
the battery in milliampere-hours in a reliable manner. Dividing the charge level by
the amount of current consumed by the device produces the battery life estimation
that was searched. To be able to provide the user with for example the remaining
standby, call and audio playback times, the current demand of the tasks needs to
be known. Thus, energy consumption measurements were conducted on the N900
to find out the average amount of current consumed by several different tasks.

Also the possibility of estimating charging time was studied. It appeared that when
charging the lithium-ion battery from empty to full, the charging rate does not
remain constant, even though the device was in standby state during the charging.
Furthermore, the N900 can be charged with several different chargers, each with a
different charging speed, and it is not possible to identify all the different chargers.
These two issues make the charging time estimation challenging, but not completely
impossible.

Based on the offline-measured energy consumptions of different tasks, a battery
monitoring application was developed. The application was named BattInfo, and it
consists of a customizable desktop widget showing a small subset of the information
that BattInfo can provide and a full screen window, showing all the battery life
estimations calculated by BattInfo, such as the remaining standby time, call time,
navigation time and web browsing time. A user test on BattInfo was conducted in
collaboration with researchers specialized in usability and user-experience. The feed-
back showed that basically BattInfo fulfilled its goals, but that there was definitely
room for improvements, especially in the visual look of the application. Based on
the users’ feedback, BattInfo was slightly modified and its appearance was changed
into a less technical and more appealing direction.

The work with BattInfo is likely to continue with a second user study, that would
examine the current version of BattInfo and give feedback on whether the changes
that were made have improved BattInfo. The application could also be further

48

developed. One idea is to change the application so that no offline energy consump-
tion measurements would be needed. The application could monitor the binaries
running on the device, identify them, and measure the energy consumption of var-
ious tasks online, in the same manner as BattInfo now measures the usage-based
energy consumption. This way the accuracy of the battery life estimation for e.g.
web browsing could improve and the application could be ported to different de-
vices without conducting the energy consumption measurements separately on each
device. The application could also provide estimates only for those tasks and appli-
cation, that the user frequently performs/runs. Thus, a user who uses a navigating
application would see estimated navigation time on his device, whereas a user play-
ing games could see estimated playing times for each game she plays. Charging time
estimation was not implemented in BattInfo, and that is another interesting area for
future work, especially making the charging time estimation accurate enough and
working for all different types of chargers that are used.

49

References

[1] TNS Global Market Research. TNS user study. Cited 1.12.2010. Url: http:

//www.tns.lv/?lang=en&fullarticle=true&category=showuid&id=2288

[2] Ofversten, J. Mobile Internet Battery Life. Challenges for application SW de-
velopment. Forum Nokia webinar. 16.12.2009. Cited 1.12.2010. Url: http:

//www.forum.nokia.com/Library/Multimedia/Webinars.xhtml

[3] GSM Arena. Mobile phones evolution: Features in focus. August
2009. Cited: 1.12.2010. Url: http://www.gsmarena.com/mobile_phones_

evolution_features-review-501p2.php

[4] Y. Neuvo. Cellular phones as embedded systems. In Proceedings of the IEEE
International Solid-State Circuits Conference (ISSCC), 2004, pp. 32-37.

[5] Finnish Communications Regulatory Authority. The survey on the
use of telecommunications services 2009 Cited 8.12.2010. Url: http:

//www.ficora.fi/attachments/suomiry/5n2kRC9zk/Tutkimusraportti_

2009_Telepalveluiden_kayttotutkimus.pdf

[6] Ravi, N., Scott, J. and Iftode, L. Context-aware Battery Management for Mobile
Phones: A Feasibility Study. In Proceedings of the 2008 Sixth Annual IEEE
International Conference on Pervasive Computing and Communications, March
2008, pp. 224-233.

[7] Kivi A., Smura T., Toyli J. (2009). Diffusion of Mobile Handset Features in Fin-
land. In Proceedings of the Eighth International Conference on Mobile Business
(ICMB), June 2009, pp. 209.

[8] Ray, N. and Turuk, A. A Review on Energy Efficient MAC Protocols for Wire-
less LANs. In Proceedings of the Fourth International Conference on Industrial
and Information Systems (ICIIS), December 2009, pp. 137.

[9] Lei, H. and Nilson, A. Queueing Analysis of Power management in the IEEE
802.11 Based Wireless LANs. IEEE Transactions on Wireless Communications,
April 2007, Vol. 6, No. 4, pp. 1286.

[10] Baek, S. and Choi, B. Performance Analysis of Power Save Mode in IEEE
802.11 Infrastructure WLAN. In Proceedings of the International Conference
on Telecommunications, June 2008.

[11] Xie, Y., Luo, X. and Chang, R. Centralized PSM: An AP-centric power saving
Mode for 802.11 infrastructure networks. IEEE SarnoffSymposium, April 2009.

[12] Zhu, F. and Niu, Z. Priority Based Power Saving Mode in WLAN. In Proceed-
ings of the IEEE Global Telecommunications Conference, November-December
2008.

50

[13] Perrucci, G., Fitzek, F., Sasso, G., Kellerer, W. and Widmer, J. On the impact
of 2G and 3G network usage for mobile phones’ battery life. In Proceedings of
the European Wireless Conference, May 2009, pp. 255.

[14] Pering, T., Agarwal, Y., Gupta, R. and Want, R. CoolSpots: Reducing the
Power Consumption of Wireless Mobile Devices with Multiple Radio Interfaces.
In Proceedings of the 4th international conference on Mobile systems, applica-
tions and services, June 2006, pp. 220-232.

[15] Chowdhury, M., Jang, Y., Ji, C., Choi, S., Jeon, H., Jee, J. and Park, C. Inter-
face selection for power management in UMTS/WLAN overlaying network. In
Proceedings of the 11th International Conference on Advanced Communication
Technology, February 2009, Vol. 01, pp. 795-799.

[16] Balasubramanian, N., Balasubramanian A. and Venkataramani, A. Energy
Consumption in Mobile Phones: A Measurement Study and Implications for
Network Applications. In Proceedings of the 9th Internet measurement confer-
ence, November 2009, pp. 280-293.

[17] Nurminen, J. Parallel connections and their effect to battery consumption of a
mobile phone. In Proceedings of the 7th IEEE Consumer Communications &
Networking Conference, January 2010.

[18] Kjaergaard, M., Langdal, J. and Godsk, T. Demonstrating EnTracked a System
for Energy-Efficient Position Tracking for Mobile Devices. Proceedings of the
12th ACM international conference adjunct papers on Ubiquitous computing
(September 2010), pp. 367-268.

[19] Lin, K., Kansal, A., Lymberopoulos, D. and Zhao, F. Energy-accuracy trade-off
for continuous mobile device location . In Proceedings of the 8th international
conference on Mobile systems, applications, and services, June 2010, pp. 285-
298.

[20] Rosu, M., Olsen, C., Luo, L. and Narayanaswami, C. The Power-Aware Stream-
ing Proxy Architecture. First International Workshop on Broadband Wireless
Multimedia, October 2004.

[21] Jimeno, M., Christensen, K. and Nordman, B. A Network Connection Proxy
to Enable Hosts to Sleep and Save Energy. In Proceedings of the IEEE Inter-
national Performance, Computing and Communications Conference, December
2008, pp. 101-110.

[22] Barr, K. C. and Asanovic. K. Energy-aware lossless data compression. ACM
Transactions on Computer Systems, August 2006, vol. 24, no. 3, pp. 250-291.

[23] Maddah, R., Sharafeddine, S. Energy-Aware Adaptive Compression Scheme
for Mobile-to-Mobile Communications. IEEE 10th International Symposium on
Spread Spectrum Techniques and Applications, August 2008, pp.688-691.

51

[24] Wang, L., Manner J. Evaluation of data compression for energy-aware com-
munication in mobile networks. In Proceedings of the International Conference
on Cyber-Enabled Distributed Computing and Knowledge Discovery, October
2009, pp. 69.

[25] Shim, H., Chang, N., Pedram, M. A Compressed Frame Buffer to Reduce Dis-
play Power Consumption in Mobile Systems. In Proceedings of the 2004 Asia
and South Pacific Design Automation Conference, January 2004, pp. 819.

[26] Iyer, S., Luo, L., Mayo, R. and Ranganathan, P. Energy-adaptive display system
designs for future mobile environments. In Proceedings of the First International
Conference on Mobile Systems, Applications, and Services, May 2003, pp. 245-
258.

[27] Luo, L. Designing Energy and User Efficient Interactions with Mobile Sys-
tems. PhD thesis. School of Computer Science, Institute for Software Research,
Carnegie Mellon University, 2008. pp. 90.

[28] Kumar, K., Lu, Y.Cloud computing for mobile users. Computer, Issue 99. March
2010.

[29] Kemp, R., Palmer, N., Kielmann, T., Bal, H. Cuckoo: a Computation Offload-
ing Framework for Smartphones. MobiCASE 2010.

[30] maemo.org. Maemo 5 Developer Guide. Cited 20.2.2011. Url: http://wiki.

maemo.org/Documentation/Maemo_5_Developer_Guide.

[31] Wen, R. and Krintz, C. Online, Battery Lifetime Prediction for Embedded and
Mobile Devices. In Workshop on Power-Aware Computer Systems (PACS),
2003.

[32] Double Click. The 1000 most-visited sites on the web Cited: 9.12.2010. Url:
http://www.google.com/adplanner/static/top1000/.

[33] Pitkanen, J. Angry Birds laajentaa reviiriaan. Tietokone-magazine, 11.12.2010.
Cited 9.2.2011. Url: http://www.tietokone.fi/uutiset/angry_birds_

laajentaa_reviiriaan.

[34] Nokia N900 Tech Specs, Power management. Web page. Cited 29.10.2010.
Url: http://europe.nokia.com/find-products/devices/nokia-n900/

specifications#hardware-pow.

[35] World Business Council for Sustainable Development. Reducing mobile
phone no-load energy demand. Case Study, 2008. Cited 29.10.2010.
Url: http://www.wbcsd.org/plugins/DocSearch/details.asp?type=

DocDet&ObjectId=MzA0MTM.

[36] Maemo platform. Web page. Cited 29.10.2010. Url: http://maemo.org/intro/
platform/.

52

[37] dbus-monitor reference. Web page. Cited 29.10.2010. Url: http://dbus.

freedesktop.org/doc/dbus-monitor.1.html.

[38] HAL reference. Cited 29.10.2010. Url: http://www.freedesktop.org/wiki/

Software/hal.

[39] Blanchette, J. and Summerfield. M. C++ GUI Programming with Qt 4. 2nd
Edition. United States, Prentice Hall, 2009.

[40] Attrakdiff, Single Evaluation. http://attrakdiff.de/en/Services/

AttrakDiff-Basic/Single-Evaluation/

53

A Output of ”hal-device bme” system command

The system command ”hal-device bme” shows all the battery-related information
that the N900 battery management entity (BME) provides. The complete output
of the command is shown below.

udi = ’/org/freedesktop/Hal/devices/bme’
info.addons = ’hald-addon-bme’ (string list)
maemo.charger.type = ’none’ (string)
maemo.charger.connection status = ’disconnected’ (string)
maemo.rechargeable.charging status = ’off’ (string)
maemo.rechargeable.positive rate = false (bool)
battery.present = true (bool)
info.product = ’Battery (BME-HAL)’ (string)
info.subsystem = ’unknown’ (string)
battery.is rechargeable = true (bool)
info.udi = ’/org/freedesktop/Hal/devices/bme’ (string)
battery.charge level.unit = ’bars’ (string)
battery.remaining time = 10800 (0x2a30) (int)
battery.type = ’pda’ (string)
battery.charge level.percentage = 62 (0x3e) (int)
battery.charge level.design = 8 (0x8) (int)
battery.charge level.capacity state = ’ok’ (string)
battery.rechargeable.is discharging = true (bool)
battery.charge level.last full = 1 (0x1) (int)
battery.reporting.design = 1262 (0x4ee) (int)
battery.reporting.last full = 5 (0x5) (int)
battery.reporting.current = 789 (0x315) (int)
battery.voltage.unit = ’mV’ (string)
battery.voltage.design = 4200 (0x1068) (int)
info.category = ’battery’ (string)
battery.voltage.current = 3881 (0xf29) (int)
battery.remaining time.calculate per time = false (bool)
info.parent = ’/org/freedesktop/Hal/devices/computer’ (string)
battery.charge level.current = 6 (0x6) (int)
battery.rechargeable.is charging = false (bool)
info.capabilities = ’battery’ (string list)
battery.reporting.unit = ’mAh’ (string)

54

B Debian packaging of a Qt application for Maemo

In order to distribute the application to the test users, it had to be made easily
downloadable and installable through the internet. Maemo devices use the Debian
package management system for software distribution. The debian package creation
for a Maemo device has some specific things that need to be taken into account
when packaging the application. This appendix explains how the application was
packaged so that it could be installed with the Maemo Application manager and
placed in the right menu on the device, and how the package was then distributed.

First the basic structure of a debian package was created by running the command
”db createorig” inside Scratchbox (a sandbox for emulating the ARMEL architec-
ture) in a folder containing the files of the project. After this, the files ”control”
and ”rules” inside were modified accoring to the instructions given in the Maemo
developers guide.

The debian package also needs a desktop file, which defines how the application will
be shown in the Maemo menus. The desktop file used for the battery monitoring
application is shown belos.

[Desktop Entry]
Name=BattInfo
Type=qt
X-Path=/opt/battinfo/battinfo
X-Multiple-Instances=false
X-home-applet-minwidth=150
X-home-applet-minheight=150

Finally, the actual debian package was created with the command dpkg-buildpackage
-rfakeroot inside Scratchbox. This command creates a .deb file which is installable
on the N900.

Creating a one-click installation link

The initial idea was to simply distribute the debian file to the users, but it was found
out that the Maemo application manager is not able to automatically download and
install the dependencies of a single debian file. Instead, when the debian package was
put into a repository, the application manager was able to handle the dependencies
correctly.

In order to make the application downloadable and installable by one click, a private

55

debian repository was built. After this, a .install file was created and a link to it was
sent to the test users. Clicking the link adds the repository that contained BattInfo
to the Maemo Catalogue list and after that installs the application together with all
its dependencies. The ”battinfo.install” file is shown below.

[install]
catalogues = Comnet
package = battinfo

[Comnet]
name = Aalto University Comnet
uri = http://www.netlab.tkk.fi/ kakorho2/1118172628/apt/
dist = fremantle
components = free

